首页> 外文OA文献 >Monitoring tool usage in cataract surgery videos using boosted convolutional and recurrent neural networks
【2h】

Monitoring tool usage in cataract surgery videos using boosted convolutional and recurrent neural networks

机译:使用提升的监测工具在白内障手术视频中的使用情况   卷积和递归神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With an estimated 19 million operations performed annually, cataract surgeryis the most common surgical procedure. This paper investigates the automaticmonitoring of tool usage during a cataract surgery, with potential applicationsin report generation, surgical training and real-time decision support. In thisstudy, tool usage is monitored in videos recorded through the surgicalmicroscope. Following state-of-the-art video analysis solutions, each frame ofthe video is analyzed by convolutional neural networks (CNNs) whose outputs arefed to recurrent neural networks (RNNs) in order to take temporal relationshipsbetween events into account. Novelty lies in the way those CNNs and RNNs aretrained. Computational complexity prevents the end-to-end training of "CNN+RNN"systems. Therefore, CNNs are usually trained first, independently from theRNNs. This approach is clearly suboptimal for surgical tool analysis: manytools are very similar to one another, but they can generally be differentiatedbased on past events. CNNs should be trained to extract the most useful visualfeatures in combination with the temporal context. A novel boosting strategy isproposed to achieve this goal: the CNN and RNN parts of the system aresimultaneously enriched by progressively adding weak classifiers (either CNNsor RNNs) trained to improve the overall classification accuracy. Experimentswere performed in a new dataset of 50 cataract surgery videos where the usageof 21 surgical tools was manually annotated. Very good classificationperformance are achieved in this dataset: tool usage could be labeled with anaverage area under the ROC curve of $A_z$ = 0.9717 in offline mode (using past,present and future information) and $A_z$ = 0.9696 in online mode (using pastand present information only).
机译:白内障手术每年估计进行1900万次手术,是最常见的手术程序。本文研究白内障手术期间工具使用的自动监控,并将其潜在地应用于报告生成,手术培训和实时决策支持中。在本研究中,在通过手术显微镜录制的视频中监控工具的使用情况。遵循最新的视频分析解决方案,通过卷积神经网络(CNN)对视频的每个帧进行分析,其输出被馈送到递归神经网络(RNN),以便考虑事件之间的时间关系。新颖性在于训练那些CNN和RNN的方式。计算复杂性阻止了“ CNN + RNN”系统的端到端训练。因此,通常首先独立于RNN训练CNN。对于外科手术工具分析,这种方法显然是次优的:许多工具彼此非常相似,但通常可以根据过去的事件加以区分。应当对CNN进行培训,以结合时间上下文来提取最有用的视觉功能。提出了一种新颖的增强策略来实现此目标:通过逐渐添加经过训练以提高总体分类准确性的弱分类器(CNNsor RNN)来同时丰富系统的CNN和RNN部分。实验在一个包含50个白内障手术视频的新数据集中进行,其中手动注释了21种手术工具的使用情况。在该数据集中实现了很好的分类性能:可以在离线模式下(使用过去,现在和将来的信息)在$ A_z $ = 0.9717的ROC曲线下用平均面积标记工具的使用,而在在线模式下(使用仅过去和现在的信息)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号